Period: From June 2022 Issued on 10.06.2022 using data to the end of May 2022

SUMMARY

The outlook for June and for June–August is that below normal river flows are likely in south Wales and southern and central England, and normal to below normal flows elsewhere. Groundwater levels in June and over the three-month timeframe are likely to be normal to below normal across most of the UK.

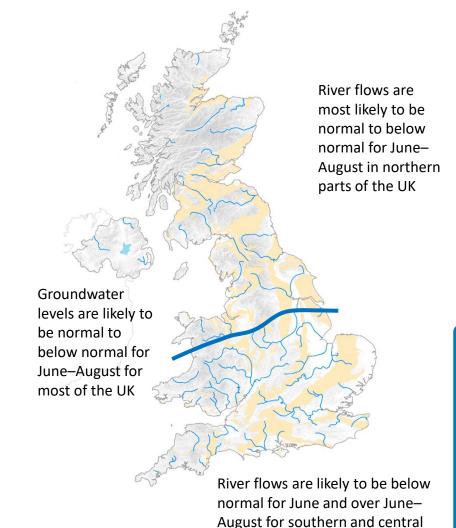
Rainfall:

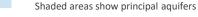
Rainfall in May was below average across Wales and East Anglia, although elsewhere in England conditions were more variable owing to localised rainfall. Northern Ireland recorded above average rainfall and north-west Scotland was exceptionally wet.

The rainfall outlook (issued by the Met Office on 30.05.2022) for June and for the June-August period suggests that there is an increased likelihood of near-average rainfall rather than wet or dry weather.

River flows

River flows in May were generally below normal or lower across England and Wales, notably so in south-west England and south Wales. New monthly flow minima for May were established on some rivers in south Wales and the Midlands.

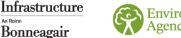

River flows in June are likely to be below normal across much of south Wales and southern and central England, with high confidence in outlooks for continued low flows for some catchments in south-east England. Elsewhere, normal to below normal flows are most likely. The same scenario is likely over the three-month timeframe, with below normal flows particularly likely in some catchments in south-east England.


Groundwater

Groundwater levels in May were normal to below normal across most of the UK. Levels in south Wales and in some boreholes in southern England and southern and eastern Scotland were notably low.

Levels in June are likely to be normal to below normal in most boreholes. Notably low groundwater levels are particularly likely for some boreholes in southern England and south Wales. The three-month outlook is similar to the one-month outlook, though with below normal levels tending more towards the normal range in some boreholes in southern England.

The Hydrological Outlook UK provides an outlook for the water situation for the UK over the next three months and beyond. For guidance on how to interpret the outlook, a wider range of information, and a full description of underpinning methods, please visit the website: www.hydoutuk.net



England, and south Wales

Delivered in partnership by:

About the Hydrological Outlook:

This document presents an outlook for the UK water situation for the next 1-3 months and beyond, using observational datasets, meteorological forecasts and a suite of hydrological modelling tools. The outlook is produced in a collaboration between the UK Centre for Ecology and Hydrology (UKCEH), British Geological Survey (BGS), the Met Office, the Environment Agency (EA), Natural Resources Wales (NRW), the Scottish Environment Protection Agency (SEPA), and for Northern Ireland, the Department for Infrastructure – Rivers (DfIR).

Data and Models:

The Hydrological Outlook depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged. Historic river flow and groundwater data are sourced from the UK National River Flow Archive and the National Groundwater Level Archive. Contemporary data are provided by the EA, SEPA, NRW and DfIR. These data are used to initialise hydrological models, and to provide outlook information based on statistical analysis of historical analogues.

Climate forecasts are produced by the Met Office. Hydrological modelling is undertaken by UKCEH using the Grid-to-Grid, PDM and CLASSIC hydrological models and by the EA using CATCHMOD. Hydrogeological modelling uses the R-groundwater model run by BGS and CATCHMOD run by the EA. Supporting documentation is available from the Outlooks website: https://www.hydoutuk.net/about/methods

Presentation:

The language used in the summary presented overleaf generally places flows and groundwater levels into just three classes, i.e. below normal, normal, and above normal. However, the underpinning methods use as many as seven classes as defined in the graphic to the right, i.e. the summary uses a simpler classification than some of the methods. On those occasions when it is appropriate to provide greater discrimination at the extremes the terminology and definitions of the seven class scheme will be adopted.

Percentile range of historic values for relevant month > 95 Exceptionally high flow 87-95 Notably high flow Above normal 72-87 Normal range 28-72 13-28 Below normal 5-13 Notably low flow < 5 Exceptionally low flow

Disclaimer and liability:

The Hydrological Outlook partnership aims to ensure that all Content provided is accurate and consistent with its current scientific understanding. However, the science which underlies hydrological and hydrogeological forecasts and climate projections is constantly evolving. Therefore any element of the Content which involves a forecast or a prediction should not be relied upon as though it were a statement of fact. To the fullest extent permitted by applicable law, the Hydrological Outlook Partnership excludes all warranties or representations (express or implied) in respect of the Content.

Your use of the Content is entirely at your own risk. We make no warranty, representation or guarantee that the Content is error free or fit for your intended use.

From April 2018 the Hydrological Outlook is supported by the Natural Environment Research Council funded <u>UK-SCAPE</u> and <u>Hydro-JULES</u> Programmes.

Copyright:

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.

- (i) Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
- (ii) Land and Property Services data. © Crown copyright and database right, S&LA 145.
- (iii) Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Further information:

For more detailed information about the Hydrological Outlook, and the derivation of the maps, plots and interpretation provided in this outlook, please visit the Hydrological Outlook UK website.

The website features a host of other background information, including a wider range of sources of information which are used in the preparation of this Outlook.

Contact:

Hydrological Outlooks UK, UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB t: 01491 692371 e: enquiries@hydoutuk.net

Reference for the Hydrological Outlook:

Hydrological Outlook UK, 2022, June, UK Centre for Ecology and Hydrology, Oxfordshire UK, Online, https://www.hydoutuk.net/latest-outlook/

Other Sources of Information:

The Hydrological Outlook should be used alongside other sources of up-to-date information on the current water resources status and flood risk.

Environment Agency Water Situation Reports: provides summary of water resources status on a monthly and weekly basis for England:

https://www.gov.uk/government/collections/water-situation-reports-for-england

Flood warnings are continually updated, and should be consulted for an up-to-date and localised assessment of flood risk:

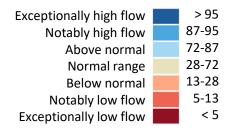
Environment Agency: https://flood-warning-information.service.gov.uk/map
https://flood-warning.naturalresources.wales/
Scottish Environment Protection Agency: https://www.sepa.org.uk/flooding.aspx

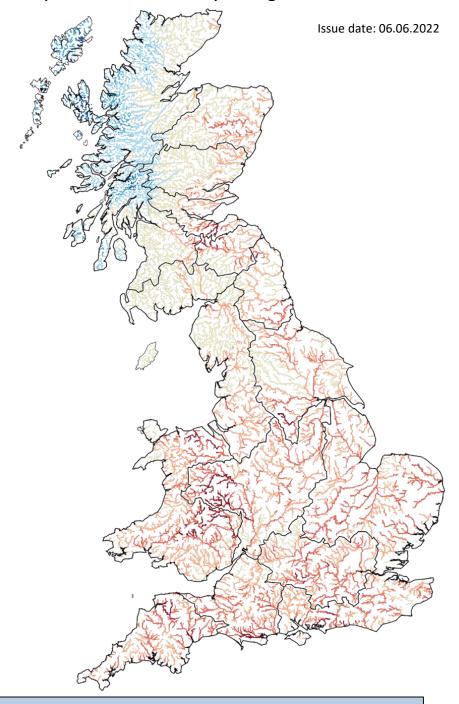
Hydrological Summary for the UK: provides summary of current water resources status for the UK: https://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk

UK Met Office forecasts for the UK: https://www.metoffice.gov.uk/#?tab=regionalForecast

UK Water Resources Portal: monitor the UK hydrological situation in near real-time including rainfall, river flow, groundwater and soil moisture from COSMOS-UK: https://eip.ceh.ac.uk/hydrology/water-resources/

Monthly mean river flows simulated by the Grid-to-Grid hydrological model


Period: May 2022


This map shows the simulated monthly mean flow across Great Britain for last month, ranked in terms of 54 years of historical flow estimates (1963 – 2016).

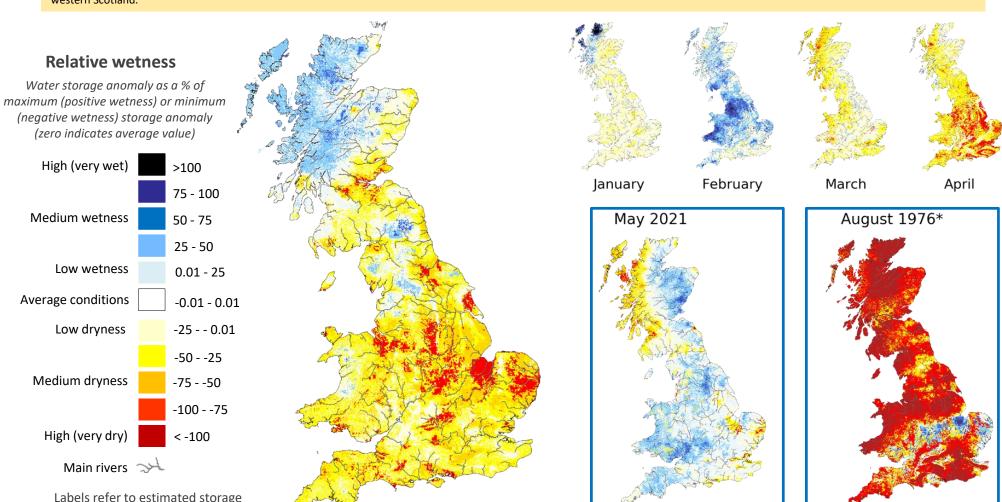
These flows are produced by the 1km resolution Grid-to-Grid (G2G) hydrological model, which is run up to the end of each calendar month using observed rainfall and MORECS potential evaporation as input.

Note that the G2G model provides estimates of natural flows.

Flow estimate for each river pixel ranked in terms of historic % flow estimates (1963-2016)

Issue date: 06.06.2022

on *final day* of named month


Current Daily Simulated Subsurface Water Storage Conditions

Based on subsurface water storage estimated for 31st May 2022

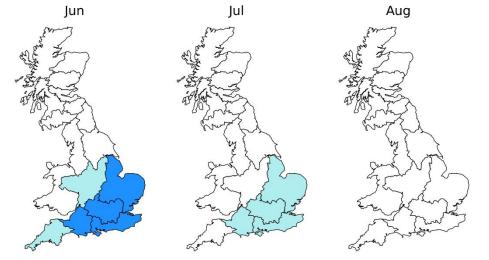
These maps are based on Grid-to-Grid (G2G) hydrological model simulated subsurface water storage, expressed as an anomaly from the historical monthly mean. To highlight areas that are particularly wet or dry, the storage anomaly is presented here using a colour scale highlighting water storage relative to historical extremes. The maps below show the "relative wetness" which combines maps previously shown separately as the "relative wetness" and "relative dryness".

These maps do not provide a forecast and are not maps of soil moisture. Instead they indicate areas which are particularly wet or dry. Rainfall in areas with high positive relative wetness could result in flooding in the coming days/weeks. Areas of negative relative wetness provide an indication of locations which are particularly dry, and little or no rain in these areas could potentially lead to (or prolong) a drought.

SUMMARY: At the end of May subsurface water levels were generally lower (drier) than normal across England, Wales and southern Scotland, and higher (wetter) than normal across northwestern Scotland.

*Example month displaying extreme negative wetness

Return Period of Rainfall Required to Overcome Dry Conditions


Period: June 2022 – November 2022

These maps show the **return period** of the rainfall required to overcome dry conditions simulated using the Grid-to-Grid (G2G) hydrological model. The maps are coloured according to the return period of accumulated rainfall required to overcome the estimated current subsurface water storage deficit over the next few months.

These maps do not provide a drought forecast. Instead they indicate the return period of rainfall required to overcome the dry conditions for the following 6 months based on current conditions.

SUMMARY: During June to July, regions in southern and eastern England would require rainfall with a return period of between 5 and 25 years to overcome the dry conditions. Elsewhere, not particularly unusual rainfall (<5 year return periods) would be required to return to average conditions for this time of year.

During August to November, Great Britain will not require particularly unusual rainfall (<5 year return periods) to return to average conditions for the time of year.

SCOTLAND

HR Highlands Region
NER North East Region
TR Tay Region

FR Forth Region
CR Clyde Region
TWP Twood Pagior

TWR Tweed Region SR Solway Region

ENGLAND

N Northumbria NW North West

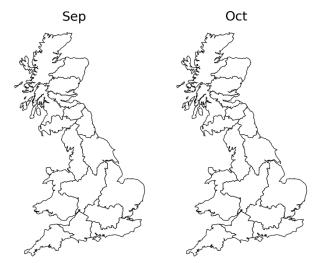
Y Yorkshire ST Severn Trent

A Anglian

T Thames

S Southern


W Wessex SW South West


WALES WEL Welsh

Issue date: 06.06.2022

NORTHERN IRELAND
This method cannot
currently be used in
Northern Ireland

Issue date: 06.06.2022

Estimate of Additional Rainfall Required to Overcome Dry Conditions

Based on subsurface water storage estimated for 31st May 2022

These maps show the Grid-to-Grid (G2G) hydrological model simulated subsurface water storage, expressed as an anomaly from the historical monthly mean (1981-2010), presented on a 1km grid and as regional means.

Subsurface storage deficits, i.e. where the subsurface water storage anomaly is less than zero, are highlighted by the red/pink colours.

The subsurface storage deficit (mm) can be interpreted as an estimate of additional rainfall that would be required in future months to overcome dry conditions (i.e. rainfall in addition to what is expected on average). Regional mean values of additional rainfall required are provided in the table below.

Regional estimate of additional rainfall required (mm)

SCOTLAND

0	HR	Highlands Region
_	NIED	

NER North East Region

Tay Region 10 TR

Forth Region FR CR 0

Clyde Region 18 **TWR** Tweed Region

SR Solway Region 14

ENGLAND

6	Ν	Northumbria

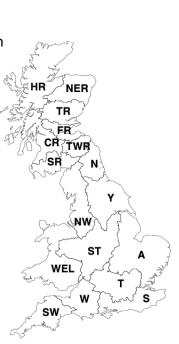
NW North West 14

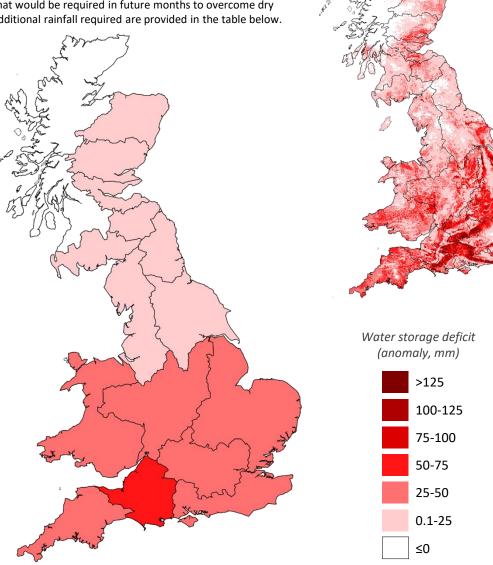
18 Υ Yorkshire

ST 32 Severn Trent

45 Α Anglian

48 Thames

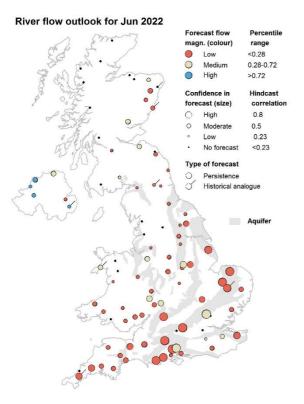

Wessex W 52


48 S Southern

SW South West 41

WALES

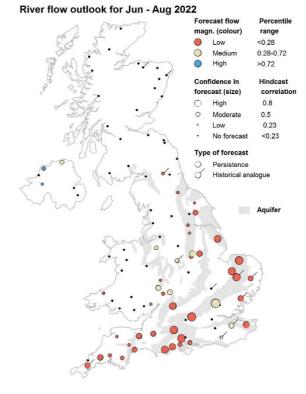
30 WEL Welsh



Period: June 2022 – August 2022

Issued on 08.06.2022 using data to the end of May 2022

SUMMARY: The outlook for June and for June to August is for below normal flows in most of England and southern Wales, normal to below normal flows in north-east Scotland, and normal to above normal flows in Northern Ireland. Please note there are not many forecasts available for north-west Britain.



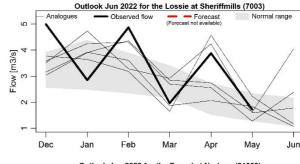
Outlooks from hydrological analogues are based on a comparison of river flow during recent months with flows during the same months in previous years at a set of approximately 90 sites from across the UK. These sites are depicted on the two maps. Years with observed flows that most closely resemble current conditions are identified as the best analogues and the outlook is based on extrapolating from current conditions based on these analogues.

It is, however, often the case that a simpler forecast based on the persistence of river flow provides a better forecast than provided by analogy. This is particularly true for slowly responding catchments associated with aquifer outcrops.

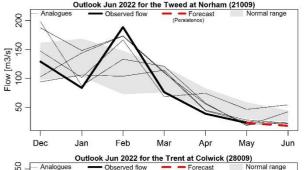
Both methods are considered at each site and the forecast from the method with the higher confidence is presented. A simple classification of flows is used (high, medium and low) as indicated by the colours of the dots, with the confidence

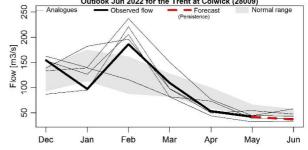
3-month flow outlook

of the forecast being represented by the size of the dot. A tag on the dot indicates which method has been used in each instance.

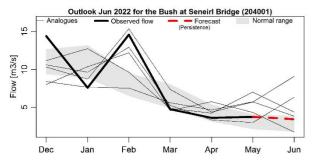

Outlook based on hydrological persistence and analogy

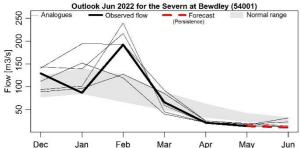
Site-based: 1 month outlook

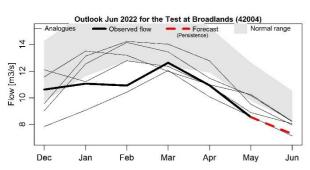

Period: June 2022

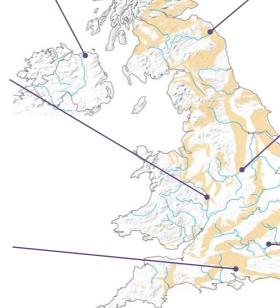

These figures provide insight into the hydrological analogue methodology for a set of sites from across the UK.

In each of the time series graphs the bold black line represents the observed flow during the past six months. The grey band indicates the normal flow range (the normal band includes 44% of observed flows in each month). The selected analogues are shown as thin lines and the trajectories that flows took in the following month are also shown. The forecast is shown as the dashed red line, and in each plot it states whether this has come from the analogues or has been generated on the basis of persistence.




Issued on 08.06.2022 using data to the end of May 2022

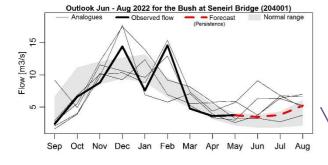


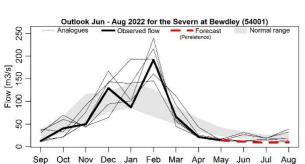


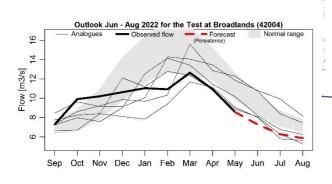
No forecast available

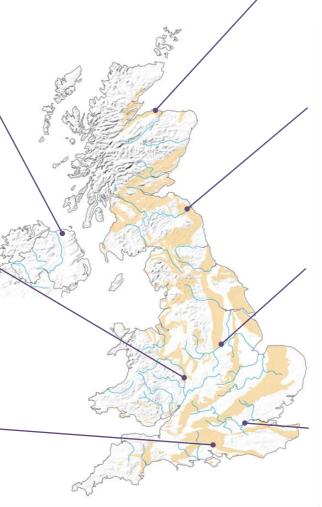
Outlook based on hydrological persistence and analogy

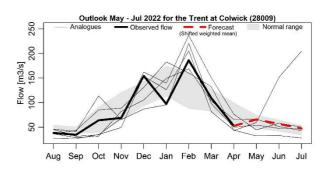
Period: June 2022 - August 2022


Issued on 08.06.2022 using data to the end of June 2022


Site-based: 3 month outlook


These figures provide insight into the hydrological analogue methodology for a set of sites from across the UK.


In each of the time series graphs the bold black line represents the observed flow during the past nine months. The grey band indicates the normal flow range (the normal band includes 44% of observed flows in each month). The selected analogues are shown as thin lines and the trajectories that flows took in the following three months are also shown. The forecast is shown as the dashed red line, and in each plot it states whether this has come from the analogues or has been generated on the basis of

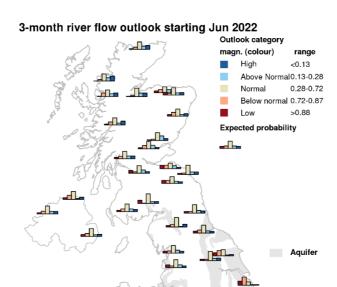


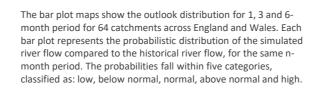
Period: June 2022 - November 2022

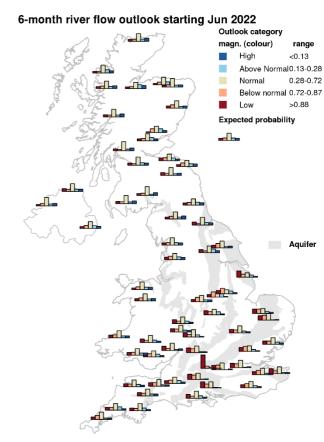
Outlook based on modelled flow from historical climate

Issued on 06.06.2022 using data to the end of May 2022

Overview

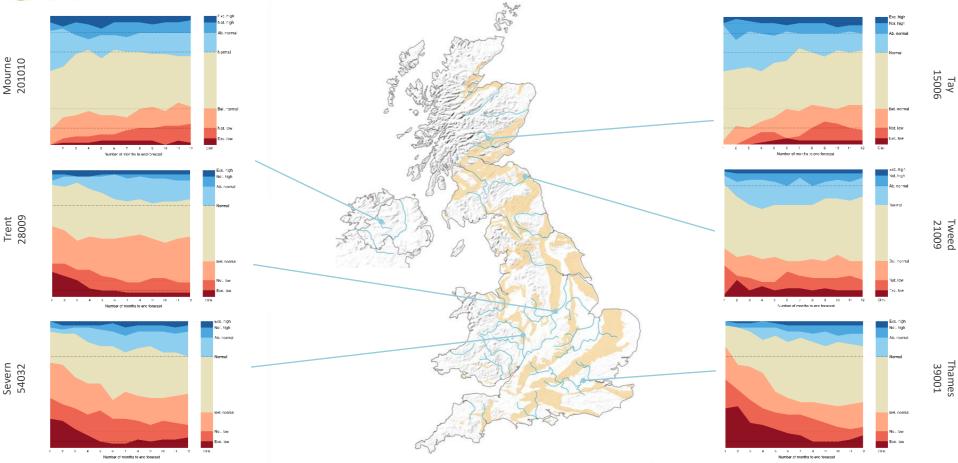

Environment Agency


British Geological Survey


> The outlook for June indicates that flows are most likely to be below normal for southern and central England and southern Wales, and normal for the rest of the UK. The June-July-August outlook indicates that flows are likely to be below normal for south eastern England, normal to below normal for south western and central England and south Wales, and normal for the rest of the UK.

1-month river flow outlook starting Jun 2022 **Outlook category** magn. (colour) range < 0.13 Above Normal0.13-0.28 0.28-0.72 Below normal 0.72-0.87 >0.88 **Expected probability** Aquifer

This outlook is based on monthly ensembles of historical sequences of observed climate (rainfall and potential evapotranspiration) that form input to a hydrological model. The outputs are probabilistic simulations of the average river flow over the forecast period (1 to 12 months ahead), at each location. The simulations are generated by the GR4J conceptual rainfall-runoff model from IRSTEA (France) calibrated on observed or naturalised flows.



This outlook is based entirely on historical sequences and therefore does not contain any knowledge of the state of the atmosphere and ocean. It is hence possible that some of the historical sequences used might be inconsistent with current largescale atmospheric conditions and would therefore be unlikely to occur in the next few months.

This outlook is based on monthly ensembles of historical sequences of observed climate (rainfall and potential evapotranspiration) that form input to a hydrological model. The outputs are probabilistic simulations of the average river flow over the forecast period (1 to 12 months ahead), at each location. The simulations are generated by the GR4J conceptual rainfall-runoff model from IRSTEA (France) calibrated on observed or naturalised flows.

The stack diagrams show the variation over time of the outlook distribution for a number of individual catchments. Each graph represents variation over time of the number of simulated river flows, in each month ensemble, that fall within each of seven categories: exceptionally low, notably low, below normal, normal, above normal, notably high and exceptionally high. The categories represent cumulative flow conditions, e.g. For 3-month, the simulated total 3-month flow compared to the historical 3-month flow distribution. The monthly variations can be compared to the long-term average distribution of river flows (shown as columns

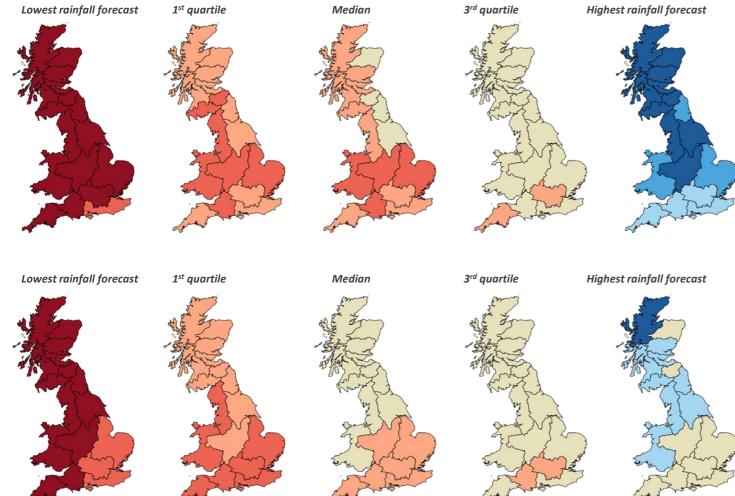
on the right of each timeline graph).

This outlook is based entirely on historical sequences and therefore does not contain any knowledge of the state of the atmosphere and ocean. It is hence possible that some of the historical sequences used might be inconsistent with current large-scale atmospheric conditions and would therefore be unlikely to occur in the next few months.

Outlook Based on Modelled Flow from Rainfall Forecasts

Period: June 2022 - August 2022

Issued on 06.06.2022 using data to the end of May


SUMMARY: During June, river flows across most of England and Wales are likely to be *Below normal* or lower. River flows in Scotland and northeast England are likely to be in the *Normal range* or below.

Over the next 3 months river flows in southern England are likely to be *Below normal* or lower. Elsewhere, river flows are likely to be in the *Normal range* or below.

These forecasts are produced by using five members of the Met Office rainfall forecast ensemble as input to a water balance hydrological model to provide the five estimates of river flows shown on the left for one month and three months ahead.

Regional forecast monthly-mean river flows are derived from the average of 1km river flow estimates within each region and ranked in terms of 54 years of historical flow estimates (1963 – 2016).

The five maps illustrate the wide range of possible flows and while there is a 50% chance of flows between the 1st and 3rd quartiles, actual flows may be more extreme than the flows derived using the highest or lowest rainfall forecasts.

Key historic values for relevant month Exceptionally high flow > 95 Notably high flow 87-95 72-87 Above normal Normal range 28-72 Below normal 13-28 5-13 Notably low flow Exceptionally low flow < 5

SCOTLAND

FR Forth Region CR Clyde Region Tweed Region SR Solway Region **ENGLAND** Northumbria North West NW Yorkshire ST Severn Trent Anglian Т Thames S Southern

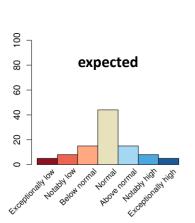
Highlands Region North East Region Tay Region

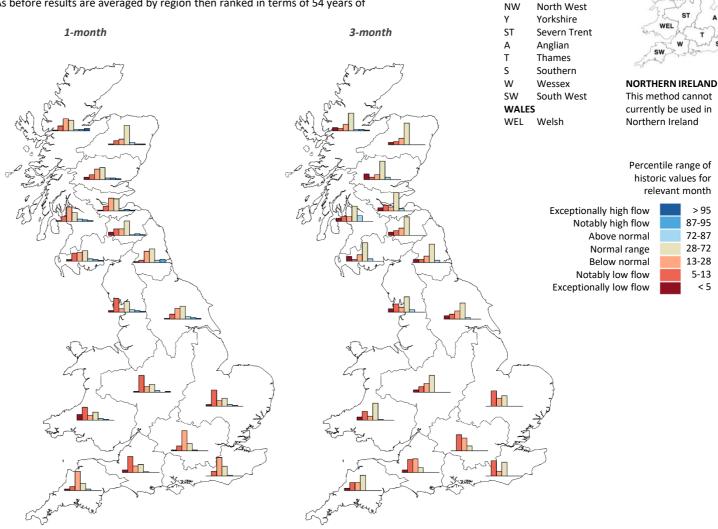
W Wessex SW South West WALES WEL Welsh

Percentile range of

NORTHERN IRELAND
This method cannot
currently be used in
Northern Ireland

Outlook Based on Modelled Flow from Rainfall Forecasts


Period: June 2022 – August 2022 Issue date: 06.06.2022


The regional maps illustrating the regional river flows for five members of the Met Office ensemble of rainfall forecasts give some indication of the range of possible river flows in the coming months. As noted previously, the actual flows could be more extreme than the flows generated by either the lowest or highest members of the rainfall ensemble.

The bar charts (below) give further insight into the range of river flow forecasts by considering all members of the forecast rainfall ensemble. The regional bar charts show the percentage of ensemble forecasts falling in each of the flow categories as generated by the monthly-resolution water-balance model. As before results are averaged by region then ranked in terms of 54 years of historical regional flow estimates (1963 – 2016).

SUMMARY: During June, river flows across most of England and Wales are likely to be *Below normal* or lower. River flows in Scotland and northeast England are likely to be in the *Normal range* or below.

Over the next 3 months river flows in southern England are likely to be *Below normal* or lower. Elsewhere, river flows are likely to be in the *Normal range* or below.

SCOTLAND

ENGLAND

NER

TR

FR

CR

Ν

Highlands Region
North East Region

Tay Region

Forth Region

Clyde Region

Tweed Region Solway Region

Northumbria

Outlook Based on Modelled Flow from Rainfall Forecasts

Issue date: 06.06.2022

Period: June 2022 - August 2022

The maps illustrating the regional river flows for five members of the Met Office ensemble of rainfall forecasts give some indication of the range of possible river flows in the coming months. As noted previously, the actual flows could be more extreme than the flows generated by either the lowest or highest members of the rainfall ensemble.

The tables below give further insight into the range of river flow forecasts by considering all members of the forecast rainfall ensemble. The numbers in the tables are the percentage of ensemble forecasts falling in each of the flow categories as generated by the monthly-resolution water-balance model. As before results are averaged by region then ranked in terms of 54 years of historical regional flow estimates (1963 – 2016).

SUMMARY: During June, river flows across most of England and Wales are likely to be Below normal or lower. River flows in Scotland and northeast England are likely to be in the Normal range or below.

Over the next 3 months river flows in southern England are likely to be Below normal or lower. Elsewhere, river flows are likely to be in the Normal range or below.

SCOTLAND

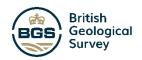
Highlands Region North East Region TR Tay Region FR Forth Region CR Clyde Region TWR Tweed Region

Solway Region

ENGLAND

Ν Northumbria NW North West Υ Yorkshire ST Severn Trent Α Anglian Т Thames

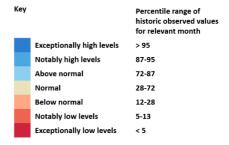
S Southern W Wessex SW South West

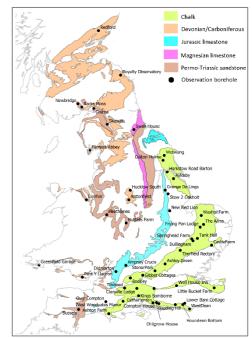

WALES

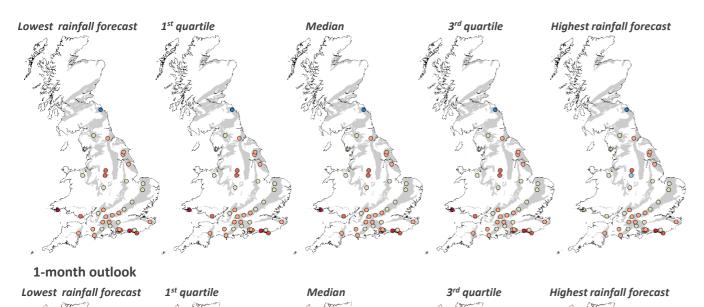
WEL Welsh

NORTHERN IRELAND This method cannot currently be used in Northern Ireland

1-month ahead	Α	NW	N	ST	sw	S	T	Welsh	w	Y	CR	FR	HR	NER	SR	TR	TWR
Exceptionally high flow	0	2	0	2	0	0	0	0	0	2	2	2	7	2	2	2	2
Notably high flow	2	5	10	0	0	0	0	2	0	5	5	5	5	2	5	5	5
Above normal	5	7	7	5	5	2	2	5	2	7	7	2	5	7	7	5	2
Normal range	24	31	40	24	21	29	21	24	24	38	26	36	31	57	31	36	43
Below normal	17	10	33	17	57	55	60	14	19	31	43	38	36	17	26	31	19
Notably low flow	48	40	7	50	12	14	14	38	48	14	14	14	14	12	24	14	19
Exceptionally low flow	5	5	2	2	5	0	2	17	7	2	2	2	2	2	5	7	10
3-months ahead	Α	NW	N	ST	sw	S	Т	Welsh	w	Υ	CR	FR	HR	NER	SR	TR	TWR
3-months ahead Exceptionally high flow	A	NW	N	ST	SW	S	T	Welsh 0	W	Y	CR 0	FR 0	HR 2	NER 0	SR 0	TR 0	TWR 0
							•			•							
Exceptionally high flow	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
Exceptionally high flow Notably high flow	0	0 0	0	0	0	0	0	0	0	0	0	0	2 5	0	0	0	0
Exceptionally high flow Notably high flow Above normal	0 0 0	0 0 7	0 0 7	0 0 0	0 0 0	0 0 0	0 0	0 0 2	0 0 0	0 0 5	0 0 17	0 0 7	2 5 5	0 0 0	0 0 7	0 0 7	0 0 0
Exceptionally high flow Notably high flow Above normal Normal range	0 0 0 31	0 0 7 45	0 0 7 55	0 0 0 50	0 0 0 45	0 0 0 0 40	0 0 0 0 14	0 0 2 50	0 0 0 0	0 0 5 48	0 0 17 45	0 0 7 55	2 5 5 5	0 0 0 0 64	0 0 7 55	0 0 7 55	0 0 0 55

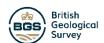

Period: June 2022 – August 2022


The 1-month forecast predicts mostly normal to below normal groundwater levels across England and Wales. Some exceptions include notably low to exceptionally low levels in the southern Chalk. Over three months, levels tend more towards normal across most of the country. Note there are a reduced number of modelled sites due to IT issues in Scotland.

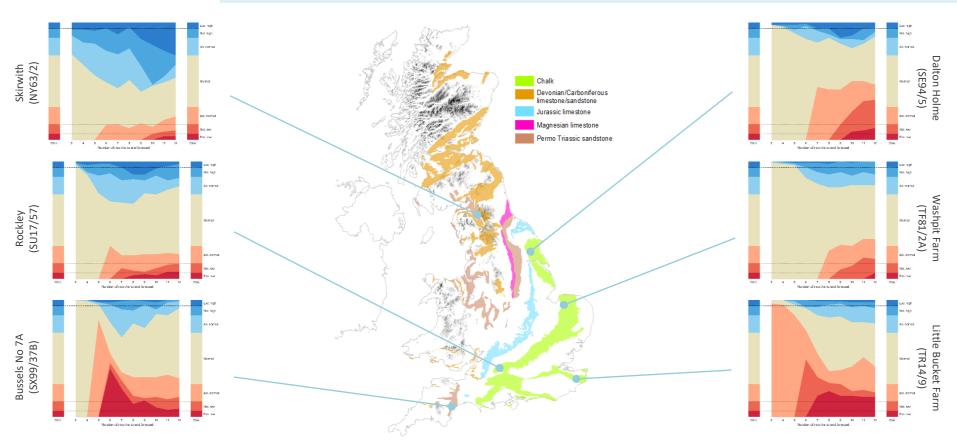

Issued on 09.06.2022 using data to the end of April

These forecasts are produced by running five members of the Met Office ensemble climate forecast through groundwater models of observation borehole hydrographs at 42 sites across the country. The sites are distributed across the principal aquifers.

Based on the distribution of observed historical groundwater levels in a given month, seven categories have been derived for each site: very low, low, below normal, normal, above normal, high, and very high. The forecast groundwater level is assigned to one of these seven categories depending on where it falls within the distribution of the historically observed values.



3-month outlook



Outlook based on modelled groundwater from historical climate

Period: June 2022 - May 2023

Issued on 09.06.2022 using data to the end of May

At Little Bucket Farm, groundwater levels are predicted to remain below normal over the next 6 months, with normal to below normal levels predicted from 6 to 12 months. Elsewhere in the Chalk groundwater levels are predicted to be predominantly normal over the next 12 months. In the Permo-Triassic sandstone at Bussels, normal to below normal levels are predicted to prevail over the next 12 months, while at Skirwith normal to above normal levels are predicted to prevail over the next 12 months.

This outlook is based on monthly ensembles of historical sequences of observed climate (rainfall and potential evpotranspiration) that form input to hydrological models. The outputs are probabilistic simulations of the average groundwater level over the forecast horizon (3 to 12 months ahead), at each location.

The graphs show variation over time of the number of simulated groundwater levels in each monthly ensemble,

that fall within each the seven categories: exceptionally low, notably low, below normal, normal, above normal, notably high and exceptionally high. The monthly variations can be compared to the long-term average distribution of levels, which are shown as columns on the left and right of each graph.

This outlook is based entirely on historical sequences and therefore does not contain any knowledge of the state of the atmosphere and ocean. It is hence possible that some of the historical sequences used might be inconsistent with current large-scale atmospheric conditions and would therefore be unlikely to occur in the next few months.